The aim of the study was to develop a technology for repairing an osteomyelitic bone defect using autologous adipose tissue mesenchymal stromal cells (MSCs) bound to a collagen matrix and to test the efficacy of this technique. Materials and Methods. The study was carried out with 17 rabbits. A bone defect was created using a milling cutter applied to the proximal third of the leg. The wound (8.0×4.0 mm and a depth of 4.0 mm) involved the periosteum, cortical layer, and cancellous substance. Staphylococcus aureus strain was used as an infectious agent. After the development of chronic osteomyelitis, the animals underwent osteonecrectomy. In the study group, autologous MSCs in Collatamp EG collagen carrier were placed into the bone defect. MSCs were obtained from adipose tissue and cultured in the matrix for 5 days. In control, the defect was filled with the collagen matrix without cells. Results. On day 14 upon the initiation of chronic osteomyelitis, bacteriological examination of the discharge from the fistula showed the presence of mixed bacterial flora (Staphylococcus aureus and Escherichia coli) in all operated animals. Results of X-ray, laboratory, and histological tests confirmed the formation of a focus of chronic osteomyelitis. Two months after the treatment (collagen with or without MSCs) began, all animals of the study group showed mature bone tissue regenerated in the affected zone. In the control group, proliferation of osteoblasts on the surface of the bone trabeculae was also observed; however, mature osteoid tissue was more often detected in the study group (35.0 vs 20.0% in control). In the study group (MSCs + collagen matrix), there was a decrease in bone marrow fibrosis (50.0 vs 100.0% in control) and cartilage formation (30.0 and 66.7%, respectively). After full treatment, newly formed bone trabeculae were detected more often (100.0 vs 60.0% in control); they were more mature and filled the defect area more efficiently. Conclusion. Our results indicate that the use of a collagen matrix with autologous MSCs is a promising plastic material for repairing osteomyelitic defects following necrectomy. The MSCs were able to increase the density of the filling material in the bone cavity, significantly accelerate the formation of bone beams around the matrix, and increase the tissue volume around the implant. The presence of MSCs significantly decreased the interference of a connective tissue component with osteogenesis and chondrogenesis.