2019
DOI: 10.33480/jitk.v5i1.613
|View full text |Cite
|
Sign up to set email alerts
|

Penerapan Metode K-Nearest Neighbor Dan Information Gain Pada Klasifikasi Kinerja Siswa

Abstract: Education is a very important problem in the development of a country. One way to reach the level of quality of education is to predict student academic performance. The method used is still using an ineffective way because evaluation is based solely on the educator's assessment of information on the progress of student learning. Information on the progress of student learning is not enough to form indicators in evaluating student performance and helping students and educators to make improvements in learning … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 16 publications
0
1
0
1
Order By: Relevance
“…dikarenakan pada penelitian ini dilakukan pembagian data antara data training dan data uji sehingga algoritma KNN memiliki hasil yang lebih akurat dibandingkan dengan algoritma yang lain. Secara teoritis model algoritma KNN juga merupakan metode yang mengklasifikasikan objek didasarkan pada nilai k dengan melihat jarak terdekat suatu objek berdasarkan data latih atau data uji (Setiyorini & Asmono 2019).…”
Section: Pembahasanunclassified
“…dikarenakan pada penelitian ini dilakukan pembagian data antara data training dan data uji sehingga algoritma KNN memiliki hasil yang lebih akurat dibandingkan dengan algoritma yang lain. Secara teoritis model algoritma KNN juga merupakan metode yang mengklasifikasikan objek didasarkan pada nilai k dengan melihat jarak terdekat suatu objek berdasarkan data latih atau data uji (Setiyorini & Asmono 2019).…”
Section: Pembahasanunclassified
“…The KNN algorithm is one of the non -metric methods in the recognition of patterns. This algorithm groups objects based on the closest features by finding the closest distance between data and neighboring values (K) [20].…”
Section: K-nearest Neighbormentioning
confidence: 99%