The ultimate goals of serious education games (SEG) are to facilitate learning and maximizing enjoyment during playing SEGs. In SEG development, there are normally two spaces to be taken into account: knowledge space regarding learning materials and content space regarding games to be used to convey learning materials. How to deploy the learning materials seamlessly and effectively into game content becomes one of the most challenging problems in SEG development. Unlike previous work where experts in education have to be used heavily, we proposed a novel approach that works toward minimizing the efforts of education experts in mapping learning materials to content space. For a proof-of-concept, we apply the proposed approach in developing an SEG game, named Chem Dungeon, as a case study in order to demonstrate the effectiveness of our proposed approach. This SEG game has been tested with a number of users, and the user survey suggests our method works reasonably well.
Stemming Javanese affix words using Nazief & Adriani modifications still has problems that cannot be solved such as overstemming, understemming, and unchange. Then there needs to be improvements to improve the performance of Nazief & Adriani modifications. This study aims to improve the performance of Nazief & Adriani modifications using the Enahnced Confix Stripping (ECS) modification method. The results of this study indicate that Enhanced Confix Stripping can improve performance that previously had an accuracy of only 78.2% to 97.9% with an error rate of 2.1%. And fixing errors that originally numbered 98 to 9 errors. But Enhanced Confix Stripping still has problems with the words "ngetan, kumanggah, kumarut, kumasis, kumareg, kumadul, kumaras, katawakake, and pangenan". The next research is expected to be able to solve this problem.
Diabetes is a metabolic disorder disease in which the pancreas does not produce enough insulin or the body cannot use insulin produced effectively. The HbA1c examination, which measures the average glucose level of patients during the last 2-3 months, has become an important step to determine the condition of diabetic patients. Knowledge of the patient's condition can help medical staff to predict the possibility of patient readmissions, namely the occurrence of a patient requiring hospitalization services back at the hospital. The ability to predict patient readmissions will ultimately help the hospital to calculate and manage the quality of patient care. This study compares the performance of the Naïve Bayes method and C4.5 Decision Tree in predicting readmissions of diabetic patients, especially patients who have undergone HbA1c examination. As part of this study we also compare the performance of the classification model from a number of scenarios involving a combination of preprocessing methods, namely Synthetic Minority Over-Sampling Technique (SMOTE) and Wrapper feature selection method, with both classification techniques. The scenario of C4.5 method combined with SMOTE and feature selection method produces the best performance in classifying readmissions of diabetic patients with an accuracy value of 82.74 %, precision value of 87.1 %, and recall value of 82.7 %.
The development of Indonesia's imports fluctuate over years. Inability to anticipate such rapid changes can cause economic slump due to inappropriate policy. For instance, recent years imports in rice led to the extermination of rice reserves. The reason is to maintain the market price of rice in Indonesia. To overcome these changes, forecasting the amount of imports should assist the Government in determining the optimum policy. This can be done by utilizing an algorithm to forecast time series data, in this case the amount of imports in the next few months with a high degree of accuracy. This study uses data obtained from the official website of the Indonesian Ministry of Trade. Then, Seasonal Autoregressive Integrated Moving Average (SARIMA) method is applied to forecast the imports. This method is suitable for the interconnected dependent variables, as well as in forecasting seasonal data patterns. The results of the experiment showed that 6-period forecast is the most accurate results compared to forecasting by 16 and 24 periods. The research resulted in the best model, that is ARIMA (0, 1, 3)(0, 1, 1)12 produces forecasting with a MAPE value of 7.210 % or an accuracy rate of 92.790 %. By applying this imports forecast model, the government can have a forward strategic plans such as selectively imports products and carefully decide the amount of the incoming products to Indonesia. Hence, it could maintain or improve the economic condition where local businesses can grow confidently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.