The development of Indonesia's imports fluctuate over years. Inability to anticipate such rapid changes can cause economic slump due to inappropriate policy. For instance, recent years imports in rice led to the extermination of rice reserves. The reason is to maintain the market price of rice in Indonesia. To overcome these changes, forecasting the amount of imports should assist the Government in determining the optimum policy. This can be done by utilizing an algorithm to forecast time series data, in this case the amount of imports in the next few months with a high degree of accuracy. This study uses data obtained from the official website of the Indonesian Ministry of Trade. Then, Seasonal Autoregressive Integrated Moving Average (SARIMA) method is applied to forecast the imports. This method is suitable for the interconnected dependent variables, as well as in forecasting seasonal data patterns. The results of the experiment showed that 6-period forecast is the most accurate results compared to forecasting by 16 and 24 periods. The research resulted in the best model, that is ARIMA (0, 1, 3)(0, 1, 1)12 produces forecasting with a MAPE value of 7.210 % or an accuracy rate of 92.790 %. By applying this imports forecast model, the government can have a forward strategic plans such as selectively imports products and carefully decide the amount of the incoming products to Indonesia. Hence, it could maintain or improve the economic condition where local businesses can grow confidently.
The impact of the digital era is the gap between active smartphone users and those who are not particular. Then IT is not fully felt by the senior citizen. This study aims to determine the ability of the senior citizen in the use of smartphones. The results of the study will be used as a reference for teaching IT to four senior citizen people. As a result, two senior citizen people want to be taught to use smartphones intensive and privately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.