2023
DOI: 10.33633/tc.v22i1.7527
|View full text |Cite
|
Sign up to set email alerts
|

Penerapan Metode Oversampling SMOTE Pada Algoritma Random Forest Untuk Prediksi Kebangkrutan Perusahaan

Abstract: Kemajuan teknologi informasi berkembang kearah finansial dalam melakukan prediski. Banyak model algoritma prediksi data keuangan telah dikembangkan. Prediksi kebangkrutan merupakan sesuatu yang sangat penting bagi organisasi atau perusahaan dalam mengambil keputusan yang diperlukan oleh pemodal dan investor. Prediksi kebangkrutan termasuk dalam permasalahan ketidakseimbangan kelas dalam model kalsifikasi karena jumlah data yang termasuk dalam kelas bangkrut jauh lebih sedikit dibandingkan dengan data yang term… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(5 citation statements)
references
References 17 publications
0
4
0
1
Order By: Relevance
“…Penggunaan SMOTE meningkatkan akurasi pada algoritma Naïve Bayes sebesar 24%, pada algoritma KNN sebesar 1%, dan pada algoritma Decision Tree sebesar 2%. Penelitian [13] juga menyimpulkan bahwa teknik oversampling SMOTE dapat meningkatkan akurasi model yang dibuat, bahkan hingga 7,40% .…”
Section: Level Of Overfitting the Research Findings Indicate That The...unclassified
“…Penggunaan SMOTE meningkatkan akurasi pada algoritma Naïve Bayes sebesar 24%, pada algoritma KNN sebesar 1%, dan pada algoritma Decision Tree sebesar 2%. Penelitian [13] juga menyimpulkan bahwa teknik oversampling SMOTE dapat meningkatkan akurasi model yang dibuat, bahkan hingga 7,40% .…”
Section: Level Of Overfitting the Research Findings Indicate That The...unclassified
“…The Random Forest algorithm is effective in predictive modeling and classification tasks through techniques such as oversampling, feature selection, and weighted Random Forest [35][36] [37]. These methods have improved classification performance, accuracy, and predictive capabilities in various contexts, including inventory management and medical data analysis.…”
Section: Implications and Recommendationsmentioning
confidence: 99%
“…These methods have improved classification performance, accuracy, and predictive capabilities in various contexts, including inventory management and medical data analysis. Reference Nugroho & Rilvani (2023) discuss the application of oversampling using the SMOTE method in the Random Forest algorithm for predicting corporate bankruptcy, resulting in a 7.40% increase in classification performance after data preprocessing [35]. Reference Priantama & Siswa (2022) focuses on optimizing the Random Forest Classifier's accuracy by utilizing correlation-based feature selection, enhancing its performance in predicting academic student performance [36].…”
Section: Implications and Recommendationsmentioning
confidence: 99%
See 2 more Smart Citations