2022
DOI: 10.32665/statkom.v1i2.1170
|View full text |Cite
|
Sign up to set email alerts
|

Penerapan Metode Regresi Linier Berganda Pada Kasus Balita Gizi Buruk Di Kabupaten Bojonegoro

Abstract: Latar   Belakang: Balita merupakan kelompok paling rentan terhadap masalah gizi apabila ditinjau dari sudut masalah kesehatan dan gizi, dimana balita mengalami siklus pertumbuhan dan perkembangan yang relatif pesat. Salah satu metode untuk menentukan faktor-faktor yang signifikan berpengaruh terhadap terjadinya kasus gizi buruk adalah metode Regresi Linear Berganda. Tujuan: Mendapatkan statistik deskriptif untuk kasus balita gizi buruk beserta variabel prediktornya di kabupaten Bojonegoro tahun 2020, dan menge… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
3
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(3 citation statements)
references
References 2 publications
0
3
0
Order By: Relevance
“…Multiple linear regression analysis is an analysis with multiple independent variables (Janah & Kartini, 2022). Regression analysis is an analysis that aims to determine whether there is a statistically dependent relationship between two variables, namely the predictor variable and the response variable (Hermawan, 2021).…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…Multiple linear regression analysis is an analysis with multiple independent variables (Janah & Kartini, 2022). Regression analysis is an analysis that aims to determine whether there is a statistically dependent relationship between two variables, namely the predictor variable and the response variable (Hermawan, 2021).…”
Section: Introductionmentioning
confidence: 99%
“…The least squares method can be applied to various types of mathematical models, such as linear, polynomial, and exponential models (Klau, 2019). This method is also very useful in processing data that contains noise or uncertainty because it can reduce the effect of data variability (Janah & Kartini, 2022). The least squares method is used to determine the coefficient values in the straight line equation by minimizing the sum of the squared differences between the observed values and the values predicted by the mathematical model (Sartika et al, 2020).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation