Teknologi informasi dan komunikasi saat ini sangat berkembang pesat, salah satunya Aplikasi Chat atau pesan instan seperti WhatsApp, Line dan Telegram. Pada bulan Oktober 2020, mayoritas pengguna aplikasi pesan instan adalah pengguna aplikasi WhatsApp, dengan total 2 miliar pengguna. Sekalipun aplikasi whatsapp tersebut masuk dalam peringkat teratas dan mendapat skor tertinggi, akan tetapi hal tersebut tidak dapat dijadikan tolak ukur kepuasan karena masih terdapat pandangan yang negatif terhadap aplikasi whatsapp, sebagian pengguna menganggap bahwa whatsapp seringkali eror pada saat digunakan, kemudian masalah lain yang muncul seperti jaringan yang digunakan pengguna tidak stabil. Untuk melakukan analisis mengenai hal tersebut diperlukan pendekatan analisis sentimen guna mengkategorikan komentar pengguna menjadi positif atau negatif. Penelitian ini menggunakan algoritma Naïve Bayes dengan Support Vector Machine dalam menganalisa komentar positif dan negatif terhadap kepuasan pengguna aplikasi Whatsapp di Google Play Store. Dari hasil pengujian yang dilakukan terhadap 1500 data komentar pengguna, evaluasi model menggunakan 10 Fold Cross Validation menunjukan bahwa tingkat keakurasian untuk kepuasan pengguna aplikasi whatsapp berdasarkan algoritma Naïve Bayes adalah sebesar 70,40% dan Support Vector Machine sebesar 77,00%, sedangkan nilai AUC Naïve Bayes sebesar 0,585 dan Support Vector Machine adalah 0,876. Dari hasil tersebut algoritma Support Vector Machine dapat digunakan untuk penelitian dengan karakteristik data yang sama.