Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Myogenic enhancer transcription factor 2A (MEF2A) is a transcription factor known for its role in controlling skeletal muscle regeneration and metabolic processes, while activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays a role in modulating metabolic processes, immunity, and oncogenesis. Environmental factors, such as dietary protein, can influence gene expression levels. Insufficient protein intake can negatively affect the metabolic performance of internal organs, leading to the abnormal weight of internal organs. A total of 192 non-sexing crossbred local chickens day-old-chick (DOC) with a completely randomized design (CRD) method of 3 treatments and 8 replicates. Real-time polymerase chain reaction (RT-PCR) is used to measure the gene expression levels. This study aimed to determine the effect of feeding with various protein levels on internal organ weight and gene expression of MEF2A and ATF3 in crossbred local chickens. Result The analysis of treatment revealed that the results were not significantly different (P > 0.05) on gizzard weight and spleen weight. However, it shows a significantly different result (P < 0.05) on heart weight and a highly significantly different result (P < 0.01) on pancreas weight. These findings suggest that protein levels in the diet had a significant impact on heart and pancreas weights. In terms of gene expression, the increased utilization of protein did not result in an elevation of MEF2A gene expression in both muscle tissue and liver tissue. Specifically, in muscle tissue, MEF2A gene expression was highly expressed at 18% protein feed for the starter phase and 16% for the finisher phase. Conversely, in liver tissue, MEF2A gene expression was highly expressed at 22% protein feed for the starter phase and 20% for the finisher phase. Moreover, ATF3 gene expression in muscle tissue exhibited a negative correlation with increasing feed protein levels. Conclusion The results indicate that varying protein levels did not lead to abnormal weights in the liver, kidney, heart, and spleen organs. Additionally, the differential gene expression patterns of MEF2A and ATF3 in muscle tissue and liver tissue suggest that these genes respond differently to varying protein-feeding treatments. These findings provide insights into the complex regulatory mechanisms of MEF2A and ATF3 genes in relation to protein levels and organ-specific responses in crossbred local chickens.
Background Myogenic enhancer transcription factor 2A (MEF2A) is a transcription factor known for its role in controlling skeletal muscle regeneration and metabolic processes, while activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays a role in modulating metabolic processes, immunity, and oncogenesis. Environmental factors, such as dietary protein, can influence gene expression levels. Insufficient protein intake can negatively affect the metabolic performance of internal organs, leading to the abnormal weight of internal organs. A total of 192 non-sexing crossbred local chickens day-old-chick (DOC) with a completely randomized design (CRD) method of 3 treatments and 8 replicates. Real-time polymerase chain reaction (RT-PCR) is used to measure the gene expression levels. This study aimed to determine the effect of feeding with various protein levels on internal organ weight and gene expression of MEF2A and ATF3 in crossbred local chickens. Result The analysis of treatment revealed that the results were not significantly different (P > 0.05) on gizzard weight and spleen weight. However, it shows a significantly different result (P < 0.05) on heart weight and a highly significantly different result (P < 0.01) on pancreas weight. These findings suggest that protein levels in the diet had a significant impact on heart and pancreas weights. In terms of gene expression, the increased utilization of protein did not result in an elevation of MEF2A gene expression in both muscle tissue and liver tissue. Specifically, in muscle tissue, MEF2A gene expression was highly expressed at 18% protein feed for the starter phase and 16% for the finisher phase. Conversely, in liver tissue, MEF2A gene expression was highly expressed at 22% protein feed for the starter phase and 20% for the finisher phase. Moreover, ATF3 gene expression in muscle tissue exhibited a negative correlation with increasing feed protein levels. Conclusion The results indicate that varying protein levels did not lead to abnormal weights in the liver, kidney, heart, and spleen organs. Additionally, the differential gene expression patterns of MEF2A and ATF3 in muscle tissue and liver tissue suggest that these genes respond differently to varying protein-feeding treatments. These findings provide insights into the complex regulatory mechanisms of MEF2A and ATF3 genes in relation to protein levels and organ-specific responses in crossbred local chickens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.