Utilization of palm oil waste in palm kernel shells as activated carbon, the activated carbon manufacturing goes through several processes, including dehydration, carbonization, and activation. Palm shell particle size was controlled during the activated carbon synthesis process through the temperature of the milling time and carbonization processes. The carbonization process was carried out using an electric furnace at carbonization temperatures 400, 600, and 800 °C, respectively. A carbonization time was 1 hour under vacuum condition to produce initial values of particle and grain sizes that had a neat structure and had absorption capacity. The particle size of formed activated carbon was measured by PSA (particle size analyzer) type Coulter LS 100Q micron scale. The particle size of active carbon was dependent on the carbonization temperature at 400, 600, and 800 °C was obtained particle size 19,90, 9,507, and 6,264 μm, respectively. Several characterizations are required to determine the properties of activated carbon was obtained. FTIR Spectrophotometer was used to observe activated carbon’s molecule structure before and after dehydration and carbonization process. It was found that the specific fingerprint at 2913,91 cm-1 and 2923,56 cm-1 for the carbon chain of activated carbon. Other physical and chemical properties were conducted to investigate moisture content, thermal property, yield enhancement, and formed product appearance.