2023
DOI: 10.12962/j27213862.v6i1.14969
|View full text |Cite
|
Sign up to set email alerts
|

Pengelompokan Kemiskinan di Indonesia Menggunakan Time Series Based Clustering

Abstract: Indonesia memiliki komitmen yang besar dalam mencapai Sustainable Development Goals (SDGs) 2030, salah satu target dalam SDGs tersebut adalah pengentasan kemiskinan. Kemiskinan sendiri diartikan sebagai ketidakmampuan orang atau sekelompok orang dalam memenuhi kebutuhan makanan dan bukan makanan. Pada masa pandemi Indonesia mengalami peningkatan persentase kemiskinan yaitu mencapai puncaknya pada bulan September 2020 dengan angka sebesar 10,19%. Pada pencatatan terakhir bulan Maret 2022 angka tersebut sudah me… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 13 publications
0
2
0
Order By: Relevance
“…In addition, cluster analysis has also been studied in grouping regencies/cities in West Java Province based on poverty indicators using the k-means algorithm which produces 5 clusters (Febianto & Palasara, 2019). On the other hand, Setiawan & Zahra (2023) used time series-based clustering to classify poverty in Indonesia in which there are 3 clustering groups were created, that are low, medium and high poverty categories.…”
Section: Introductionmentioning
confidence: 99%
“…In addition, cluster analysis has also been studied in grouping regencies/cities in West Java Province based on poverty indicators using the k-means algorithm which produces 5 clusters (Febianto & Palasara, 2019). On the other hand, Setiawan & Zahra (2023) used time series-based clustering to classify poverty in Indonesia in which there are 3 clustering groups were created, that are low, medium and high poverty categories.…”
Section: Introductionmentioning
confidence: 99%
“…Another clustering research is the application of Time Series Clustering in Poverty Clustering in Indonesia [6]. This study is one of Hierarchical Clustering.…”
Section: Introductionmentioning
confidence: 99%