This study aims to determine the prediction model of the graduation status of prospective teacher students at IAIN Bone in terms of attributes, accuracy levels, and differences in the level of accuracy produced in the attributes of decision tree C4.5, Naïve Bayes, and k-NN data mining algorithms. This research uses a quantitative approach by adopting the Data Mining method. This research was conducted at IAIN Bone. The data collection process in this study used documentation techniques in the form of data on alumni of the Tarbiyah Faculty of IAIN Bone. The data analysis used was a descriptive analysis using decision tree C4.5, Naive Bayes, and k-NN data mining algorithms assisted by the RapidMiner application. The results of this study show that (1) model prediction of the graduation status of prospective teacher students in IAIN Bone in terms of attributes generated in the Decision Tree C4.5 and Naïve Bayes data mining algorithms consist of gender, age, Semester 1 IP, Semester 2 IP, Semester 3 IP, Semester 4 IP, and GPA, while the attributes produced in k-NN data mining algorithm consists of gender, regional origin, number of siblings, age, IP Semester 1, IP Semester 2, IP Semester 3, IP Semester 4, and GPA; (2) model prediction of graduation status of iain bone teacher candidate students in terms of the accuracy rate generated in the Decision Tree C4.5 data mining algorithm of 93.90%, Naïve Bayes by 90.24%, and k-NN of 92.07%; and (3) there was no significant difference between the accuracy rate produced by decision tree's data mining algorithm. C4.5 and Naïve Bayes (p-value = 1.00); Decision Tree C4.5 and k-NN (p-value = 1.00); as well as Naïve Bayes and k-NN (p-value = 1.00) in predicting the graduation status of iain bone teacher candidate students.