This work reports synthesis, thin film characterizations, and study of an organic semiconductor 2-aminoanthraquinone (AAq) for humidity and temperature sensing applications. The morphological and phase studies of AAq thin films are carried out by scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD) analysis. To study the sensing properties of AAq, a surface type Au/AAq/Au sensor is fabricated by thermally depositing a 60 nm layer of AAq at a pressure of ~10−5 mbar on a pre-patterned gold (Au) electrodes with inter-electrode gap of 45 µm. To measure sensing capability of the Au/AAq/Au device, the variations in its capacitance and resistance are studied as a function of humidity and temperature. The Au/AAq/Au device measures and exhibits a linear change in capacitance and resistance when relative humidity (%RH) and temperature are varied. The AAq is a hydrophobic material which makes it one of the best candidates to be used as an active material in humidity sensors; on the other hand, its high melting point (575 K) is another appealing property that enables it for its potential applications in temperature sensors.