This review provides an update on advances in the area of electrical mode sensors using organic small molecule n-type semiconductors based on perylene. Among small organic molecules, perylene diimides (PDIs) are an important class of materials due to their outstanding thermal, chemical, electronic, and optical properties, all of which make them promising candidates for a wide range of organic electronic devices including sensors, organic solar cells, organic field-effect transistors, and organic light-emitting diodes. This is mainly due to their electron-withdrawing nature and significant charge transfer properties. Perylene-based sensors of this type show high sensing performance towards various analytes, particularly reducing gases like ammonia and hydrazine, but there are several issues that need to be addressed including the selectivity towards a specific gas, the effect of relative humidity, and operating temperature. In this review, we focus on the strategies and design principles applied to the gas-sensing performance of PDI-based devices, including resistive sensors, amperometric sensors, and operating at room temperature. The device properties and sensing mechanisms for different analytes, focusing on hydrazine and ammonia, are studied in detail, and some future research perspectives are discussed for this promising field. We hope the discussed results and examples inspire new forms of molecular engineering and begin to open opportunities for other rylene diimide classes to be applied as active materials.
An amperometric type sensor whose active layer is derived from a tetra core-substituted organic semiconductor, naphthalene diimide (NDI-CN4), has been evaluated for ammonia gas (3, 6, 25 and 50 ppm)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.