In this paper, the ordering of the arrays of TiO2 nanotubes obtained by the method of anodic oxidation in the fluoro-containing aqueous-nonaqueous electrolytes containing glycerine and surface-active materials is investigated. For analysis of ordering, the two-dimensional Fourier spectrum, do-it-yourself configurational geometrical entropy and section of the two-dimensional autocorrelation function were used. These characteristics allow us to identify a nature of ordering in sufficient detail and to obtain the preliminary quantitative assessments of this order. It is found that, in the systems of titanium-oxide nanotubes, the stable, almost correct short-range order is established within the first coordination sphere. Such order is similar to the amorphous ordering. At the same time, the ordering of nanotubes arrays differs in detail from the amorphous one in the greater expressiveness of the typical scale the sizes of which can be estimated using the Fourier spectra as well as autocorrelation function.