To optimize and improve the impact performance of a hydraulic rock drill, it is helpful to test the stress waves of the drill and analyze the impact energy, impact frequency, and energy utilization rate. For this study, a stress wave test bench was designed and built, according to international standards, in order to study the impact process of a hydraulic rock drill under the working pressures of 18 MPa and 23 MPa. The impact energy, impact frequency, and energy utilization rate of two different hydraulic rock drill pistons in low, middle, and high gear were analyzed using a control variable method. The results demonstrate that the impact stress waves of the rock drill periodically occur in the drill rod, and then decay exponentially until they become close to zero. Moreover, the amplitude of the incident stress wave determines the rock-breaking ability of the drill. The impact energy of the short piston is greater than that of the long piston, with a maximum average value of 346.1 J; the impact frequency of the long piston is higher than that of the short piston, with a maximum average value of 62 Hz; and the energy utilization rate of the short piston is higher than that of the long piston, with a maximum average value of 56.92%, which is close to the theoretical ideal efficiency. Therefore, it can be concluded that the impact performance of a hydraulic rock drill can be effectively tested using the proposed horizontal bench, and that piston characteristics and the working pressure are the main factors affecting impact performance. Accordingly, when developing a hydraulic rock drill, it is advisable to select a shorter piston and a higher working pressure, thus allowing the drill to provide good impact performance.