Laser-induced fluorescence (LIF) spectra of calcified human heart-valve tissue and LIF spectra of macroscopic calcinosis fragments dissected from human heart valves were compared with LIF spectra of pig myocardium tissues. Excitation was provided by an excimer laser with wavelength lambda = 248 nm. Fluorescence bands that were due to mineral and organic tissue components were identified by measurement of LIF spectra of macroscopic fragments of calcified tissues that had been heat treated at 700 degrees C. The studies showed that LIF spectra of calcified tissues include fluorescence emission from tryptophan, collagen, elastin, and a mineral component of tissue, hydroxylapatite. The observed differences in LIF spectra of normal and calcified tissues with different pathologies may result not only from calcification-induced changes in relative collagen and elastin concentrations but also from additional (absent in normal heart tissue) fluorescence of hydroxylapatite. The calcification-induced changes in the LIF spectra of human heart-valve tissues, characterized by a 330/450 nm ratio, were found to be quite appreciable, which suggests that this ratio can be used with LIF measurements to evaluate the degree of heart-tissue calcification.
Traumatic brain injury (TBI) is a major public health problem. Here, we developed a novel model of non-invasive TBI induced by laser irradiation in the telencephalon of adult zebrafish (Danio rerio) and assessed their behavior and neuromorphology to validate the model and evaluate potential targets for neuroreparative treatment. Overall, TBI induced hypolocomotion and anxiety-like behavior in the novel tank test, strikingly recapitulating responses in mammalian TBI models, hence supporting the face validity of our model. NeuN-positive cell staining was markedly reduced one day, but not seven days, after TBI, suggesting increased neuronal damage immediately after the injury, and its fast recovery. The brain-derived neurotrophic factor (Bdnf) level in the brain dropped immediately after the trauma, but fully recovered seven days later. A marker of microglial activation, Iba1, was elevated in the TBI brain, albeit decreasing from Day 3. The levels of hypoxia-inducible factor 1-alpha (Hif1a) increased 30 min after the injury, and recovered by Day 7, further supporting the construct validity of the model. Collectively, these findings suggest that our model of laser-induced brain injury in zebrafish reproduces mild TBI and can be a useful tool for TBI research and preclinical neuroprotective drug screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.