A combined cooling heating and power (CCHP) system based on high-temperature proton exchange membrane fuel cell (PEMFC) is proposed. This CCHP system consists of a PEMFC subsystem, an organic Rankine cycle (ORC) subsystem and a vapor compression cycle (VCC) subsystem. The electric power of the CCHP system is 8 kW under normal operating conditions, the domestic hot water power is approximately 18 kW, and the cooling and heating capacities are 12.5 kW and 20 kW, respectively. Energy and exergy performance of the CCHP system are thoroughly analyzed for six organic working fluids using Matlab coupled with REFPROP. R601 is chosen as the working fluid for ORC subsystem based on energy and exergy analysis. The results show that the average coefficient of performance (COP) of the CCHP system is 1.19 in summer and 1.42 in winter, and the average exergy efficiencies are 46% and 47% under normal operating conditions. It can also be concluded that both the current density and operating temperature have significant effects on the energy performance of the CCHP system, while only the current density affects the exergy performance noticeably. The ambient temperature can affect both the energy and exergy performance of the CCHP system. This system has the advantages of high facility availability, high efficiency, high stability, low noise and low emission; it has a good prospect for residential applications.