2013
DOI: 10.5815/ijitcs.2013.10.02
|View full text |Cite
|
Sign up to set email alerts
|

Performance Analysis of Classification Methods and Alternative Linear Programming Integrated with Fuzzy Delphi Feature Selection

Abstract: Abstract-Among various statistical and data mining discriminant analysis proposed so far for group classification, linear programming discriminant analysis have recently attracted the researchers' interest. This study evaluates mult i-group discriminant linear programming (MDLP) for classificat ion problems against well-known methods such as neural networks, support vector machine, and so on. MDLP is less complex co mpared to other methods and does not suffer fro m local optima. However, somet imes classificat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
8
0
2

Year Published

2015
2015
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(10 citation statements)
references
References 24 publications
0
8
0
2
Order By: Relevance
“…After this stage, the study has employed FAHP for calculating the criteria weight. For the general understanding of expert's opinions about fuzziness, FDM can help to take the decisions of the group (Izadi, Ranjbarian, Ketabi, & Nassiri-Mofakham, 2013). In the first part of this study, researchers have examined the previous studies and literature of QM CSFs as an objective of study.…”
Section: Methodsmentioning
confidence: 99%
“…After this stage, the study has employed FAHP for calculating the criteria weight. For the general understanding of expert's opinions about fuzziness, FDM can help to take the decisions of the group (Izadi, Ranjbarian, Ketabi, & Nassiri-Mofakham, 2013). In the first part of this study, researchers have examined the previous studies and literature of QM CSFs as an objective of study.…”
Section: Methodsmentioning
confidence: 99%
“…Sınıflandırma yöntemlerinin performanslarını karşılaştırmak için çapraz geçerlilik (cross validation) teknikleri kullanılmaktadır. Literatürde en çok kullanılan çapraz geçerlilik teknikleri; doğrulama örneği çapraz geçerlilik (test-holdout sample cross validation), bir birimi dışarıda tutma çapraz geçerlilik (leave-one-out cross validation), bazı birimleri dışarıda tutma çapraz geçerlilik (leave-some-out cross validation) ve kat çapraz geçerlilik ( fold cross validation) yaklaşımlarıdır [50,51] hızlandırma katsayıları ve doğrusal azalan atalet ağırlık stratejisi ise PSO uygulamalarında en çok kullanılan parametrelerdir [49].…”
Section: Siniflandirma Modelleri̇ni̇n Karşilaştirilmasi (Comparison Of unclassified
“…Başlangıçta veri setinden çıkartılan küme içindeki birimler 1 kümedeki birimlerden elde edilen ayırma fonksiyonu yardımıyla gruplara sınıflandırılırlar. Bu işlem her bir küme için yani defa tekrarlanır [50,53]. Her kümeden elde edilen doğru sınıflandırma sayılarının ortalaması ilgili yöntem için kat çapraz geçerlilik doğru sınıflandırma performansı olarak alınır.…”
Section: Siniflandirma Modelleri̇ni̇n Karşilaştirilmasi (Comparison Of the Classification Models)unclassified
“…In [22] authors proposed a data classification method multi-group discriminant linear programming (MDLP) for classification problems with Support Vector Machine (SVM), Neural Networks. Local optima problem addressed and shows the MDLP not eliminate this problem and solution is less complex.…”
Section: Related Workmentioning
confidence: 99%