A serious threat to cognitive radio networks that sense the spectrum in a cooperative manner is the transmission of false spectrum sensing data by malicious sensor nodes. SNR fluctuations due to wireless channel effects complicate handling such attackers even further. This enforces the system to acquire authentication. Actually, the decision maker needs to determine the reliability or trustworthiness of the shared data. In this paper, the evaluation process is considered as an estimation dilemma on a set of evidences obtained through sensor nodes that are coordinated in an underlying wireless sensor network. Then, a likelihood-based computational trust evaluation algorithm is proposed to determine the trustworthiness of each sensor node's data. The proposed procedure just uses the information which is obtained from the sensor nodes without any presumptions about node's reliability. Numerical results confirm the effectiveness of the algorithm in eliminating malicious nodes or faulty nodes which are not necessarily conscious attackers.