Zinc-air batteries could be a key technology for higher energy densities of electrochemical energy storage systems. Many questions remain unanswered, however, and new methods for analyses and quantifications are needed. In this study, the distribution of relaxation times (DRT) based on ridge regression was applied to the impedance data of primary zinc-air batteries in a temperature range of 253 K and 313 K and at different State-of-Charges for the first time. Furthermore, the problem of the regularization parameter on real impedance spectroscopic measurements was addressed and a method was presented using the reconstruction of impedance data from the DRT as a quality criterion. The DRT was able to identify a so far undiscussed process and thus explain why some equivalent circuit models may fail.