Life cycle strategies for traction batteries, such as remanufacturing, reuse, and recycling of retired automotive lithium-ion batteries (LIBs), have received growing attention, as large volumes of LIBs will retire in the near future and the demand for LIBs continues to grow. At the same time, the relevance of the sustainability of a battery system over its entire life cycle is increasing as factors such as the EU Battery Regulation provide greater market and product transparency. As a result, research and industry require forecasts in order to assess the future market situation and to make well-founded decisions. Therefore, this paper provides forecasts of the return volumes of battery systems from BEVs and PHEVs up to 2035. Additionally, a representative European battery pack for PHEVs and BEVs was evaluated for each year since 2013, based on the ten vehicles with the largest market share in each year until 2021. In addition, the battery return streams are divided into three different 3R strategies based on expert interviews in order to evaluate the upcoming workload in these areas. The term “3R” refers to the sum of the currently existing pathways around reuse, remanufacturing, and recycling. In 2030, about 38.8 GWh will return and enter the recycling process annually. For battery reuse, about 13 GWh will return every year from 2030 onwards, ready to be used in stationary storage for energy transition. Compared to this, battery remanufacturing is expected to be supplied with a slightly lower volume of approximately 11 GWh per year.