Abstract:Crop simulation models have a pivotal role to play in evaluating irrigation management strategies for improving agricultural water use. The objective of this study was to test and validate the AquaCrop model for maize under deficit irrigation management. Field observations from three experiments consisting of four treatments were used to evaluate model performance in simulating canopy cover (CC), biomass (B), yield (Y), crop evapotranspiration (ET c ), and water use efficiency (WUE). Statistics for root mean square error, model efficiency (E), and index of agreement for B and CC suggest that the model prediction is good under non-stressed and moderate stress environments. Prediction of final B and Y under these conditions was acceptable, as indicated by the high coefficient of determination and deviations <10%. In severely stressed conditions, low E and deviations >11% for B and 9% for Y indicate a reduction in the model reliability. Simulated ET c and WUE deviation from observed values were within the range of 9.5% to 22.2% and 6.0% to 32.2%, respectively, suggesting that AquaCrop prediction of these variables is fair, becoming unsatisfactory as plant water stress intensifies. AquaCrop can be reliably used for evaluating the effectiveness of proposed irrigation management strategies for maize; however, the limitations should be kept in mind when interpreting the results in severely stressed conditions.