The aim of this paper is to present a theoretical model for efficiency evaluation of a simple cycloid drive train with one degree of freedom (DOF) or constrained cycloid drive. In order to evaluate the efficiency, it is necessary to find the losses generated in the simple cycloid drive, where only losses depending on the load were considered. Expressions for determining speed ratios, efficiency, velocities and forces acting inside the cycloid drive are presented. These expressions are implemented in the theoretical model, where the places where the losses occur are defined. A computer program was created to facilitate analysis and obtain loss values based on different input data. Only load-dependent losses were considered in the theoretical model and computer program. In order to verify the theoretical model, experimental measurements were performed. A physical model of the simple cycloid drive train was created and analyzed on the test bench. The results for "S1" operating mode, i.e. when shaft 2 is stopped, show a mean value of the efficiency of 63.49%, for experimental measurements, while the mean value for theoretical analysis is 65.25%. For the operating mode "S2", i.e. with shaft 1 stopped, the mean value of the experimental measurements of the efficiency is 60.9%, while the theoretical mean value is 62.82%.