Population increase and urban development over the last 20 years in Chile have outgrown most rainwater drainage and evacuation systems. Many cities located in the central region suffer from frequent floods in some of their sectors during winter rainfall events. In addition, the lack of green spaces in these cities leads to biodiversity loss, increasing temperatures, greater energy demands, etc. Green roofs offer a solution that can mitigate climate change by reducing the runoff in cities with extensive, highly impermeable areas. This work analyses the installation of green roofs as a potential solution to the sectorial floods suffered by many cities in central Chile. The methodology includes the identification of conflictive sectors in the city of Curicó, hydrological modelling with the Storm Water Management Model (SWMM) software, the consideration of different distributions and types of green roof surfaces, and computational simulations to determine the feasibility of green roofs for preventing floods. The results show that, for moderate rainfall events, all studied sectors could avoid flooding if at least 50% of the surrounding area had green roofs (irrespective of the type of green roof). In contrast, in the presence of strong rainfall events, only some semi-extensive and extensive green roofs covering 60% to 95% of the surrounding area, respectively, could prevent flooding.