The centerlines of polygons can be generated with the use of various methods. The aim of this study was to propose an algorithm for generating the centerline of an elongated polygon based on the transformation of vector data. The proposed method involves the determination of base points denoting the direction of river flow. These points were also used to map two polygon boundaries. A Triangulated Irregular Network (TIN) was created based on the polygon’s breakpoints. Edges that intersect the river channel in a direction perpendicular to river flow (across) were selected from a set of TIN edges. The polygon was partitioned into segments with the use of the selected TIN edges. The midpoints of selected TIN edges were used to generate the polygon’s centerline based on topological relations. The presented methodology was tested on a polygon representing a 15-km-long section of a river intersecting the city of Olsztyn (a university center). The analyzed river is a highly meandering watercourse, and its channel is narrowed down by hydraulic structures. The river features an island and distributary channels. The generated centerline effectively fits the polygon, and, unlike the solution modeled with the Medial Axis Transformation (MAT) algorithm, it does not feature branching streams.