Polarimetric synthetic aperture radar satellite and ground-based Ku-and X-band scatterometer measurements are used to explore the scattering mechanism for ice in shallow Arctic lakes, wherein strong radiometric responses are seen for floating ice, and low returns are evident where the ice has grounded. Scatterometer measurements confirm that high backscatter is from the ice/water interface, whereas polarimetric decomposition suggests that the dominant scattering mechanism from that interface is single bounce. Using Fresnel equations, a simple model for surface bounce from the ice/water interface is proposed, and its predictions are supported by experimental parameters such as co-pol phase difference, co-pol ratio, and the results of rigorous numerical modeling. Despite early research suggesting double-bounce scattering from columnar air bubbles and the ice/water interface as the dominant scattering mechanism in shallow lakes, this paper strongly supports a single-bounce model.
A winter time series of ground-based (X-and Ku-bands) scatterometer and spaceborne synthetic aperture radar (SAR) (C-band) fully polarimetric observations coincident with in situ snow and ice measurements are used to identify the dominant scattering mechanism in bubbled freshwater lake ice in the Hudson Bay Lowlands near Churchill, Manitoba. Scatterometer observations identify two physical sources of backscatter from the ice cover: the snow-ice and ice-water interfaces. Backscatter time series at all frequencies show increases from the ice-water interface prior to the inclusion of tubular bubbles in the ice column based on in situ observations, indicating scattering mechanisms independent of double-bounce scatter. The co-polarized phase difference of interactions at the ice-water interface from both scatterometer and SAR observations is centered at 0°during the time series, also indicating a scattering regime other than double bounce. A Yamaguchi three-component decomposition of the RADARSAT-2 C-band time series is presented, which suggests the dominant scattering mechanism to be single-bounce off the ice-water interface with appreciable surface roughness or preferentially oriented facets, regardless of the presence, absence, or density of tubular bubble inclusions. This paper builds on newly established evidence of single-bounce scattering mechanism for freshwater lake ice and is the first to present a winter time series of ground-based and spaceborne fully polarimetric active microwave observations with polarimetric decompositions for bubbled freshwater lake ice.
Climate warming is occurring at an unprecedented rate in the Arctic due to regional amplification, potentially accelerating land cover change. Measuring and monitoring land cover change utilizing optical remote sensing in the Arctic has been challenging due to persistent cloud and snow cover issues and the spectrally similar land cover types. Google Earth Engine (GEE) represents a powerful tool to efficiently investigate these changes using a large repository of available optical imagery. This work examines land cover change in the Lower Yenisei River region of arctic central Siberia and exemplifies the application of GEE using the random forest classification algorithm for Landsat dense stacks spanning the 32-year period from 1985 to 2017, referencing 1641 images in total. The semiautomated methodology presented here classifies the study area on a per-pixel basis utilizing the complete Landsat record available for the region by only drawing from minimally cloudand snow-affected pixels. Climatic changes observed within the study area's natural environments show a statistically significant steady greening (~21,000 km 2 transition from tundra to taiga) and a slight decrease (~700 km 2 ) in the abundance of large lakes, indicative of substantial permafrost degradation. The results of this work provide an effective semiautomated classification strategy for remote sensing in permafrost regions and map products that can be applied to future regional environmental modeling of the Lower Yenisei River region.
ABSTRACT. During the 2010/11 boreal winter, a distributed set of backscatter measurements was collected using a ground-based Ku-band (17.2 GHz) scatterometer system at 26 open tundra sites. A standard snow-sampling procedure was completed after each scan to evaluate local variability in snow layering, depth, density and water equivalent (SWE) within the scatterometer field of view. The shallow depths and large basal depth hoar encountered presented an opportunity to evaluate backscatter under a set of previously untested conditions. Strong Ku-band response was found with increasing snow depth and snow water equivalent (SWE). In particular, co-polarized vertical backscatter increased by 0.82 dB for every 1 cm increase in SWE (R 2 = 0.62). While the result indicated strong potential for Ku-band retrieval of shallow snow properties, it did not characterize the influence of sub-scan variability. An enhanced snow-sampling procedure was introduced to generate detailed characterizations of stratigraphy within the scatterometer field of view using near-infrared photography along the length of a 5 m trench. Changes in snow properties along the trench were used to discuss variations in the collocated backscatter response. A pair of contrasting observation sites was used to highlight uncertainties in backscatter response related to short length scale spatial variability in the observed tundra environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.