Over the years there have been a number of different computational methods that allow for the identification of outliers. Methods for robust estimation are known in the set of M-estimates methods (derived from the method of Maximum Likelihood Estimation) or in the set of R-estimation methods (robust estimation based on the application of some rank test). There are also algorithms that are not classified in any of these groups but these methods are also resistant to gross errors, for example, in M-split estimation. Another proposal, which can be used to detect outliers in the process of transformation of coordinates, where the coordinates of some points may be affected by gross errors, can be a method called RANSAC algorithm (Random Sample and Consensus). The authors present a study that was performed in the process of 2D transformation parameter estimation using RANSAC algorithm to detect points that have coordinates with outliers. The calculations were performed in three scenarios on the real geodetic network. Selected coordinates were burdened with simulated values of errors to confirm the efficiency of the proposed method. Keywords: Coordinate Transformation; RANSAC; Parameter Estimation.
RESUMO