Graded anodes for anode-supported solid oxide fuel cells are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting and lamination will be described. Flexural strength of the reduced cermets measured using three-point bending configuration is 468 ± 37 MPa. The graded anode supports are characterized by scanning microscope observations, intruded mercury porosimetry, and resistivity measurements, showing an adequate and homogeneous distribution nickel, zirconia, and pores. The laminated samples showed a total porosity of 18.7 % (in vol%) and a bimodal pore size distribution centered in 20 and 150 nm, and the measured electrical resistivity of this sample was 120 ± 12 μΩ cm. The novelty of the present work is the lamination of tapes at room temperature without using plasticizers. This is made by the combination of two different binders with varying T (glass transition temperature) which resulted in plastic deformation at room temperature. Those results indicate that the