Late embryogenesis abundant 14 (LEA14) cDNA was isolated from an EST library prepared from dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas). Quantitative RT-PCR revealed a variety of different IbLEA14 expression patterns under various abiotic stress conditions. IbLEA14 expression was strongly induced by dehydration, NaCl and abscisic acid treatments in sweetpotato plants. Transgenic sweetpotato non-embryogenic calli harboring IbLEA14 overexpression or RNAi vectors under the control of CaMV 35S promoter were generated. Transgenic calli overexpressing IbLEA14 showed enhanced tolerance to drought and salt stress, whereas RNAi calli exhibited increased stress sensitivity. Under normal culture conditions, lignin contents increased in IbLEA14-overexpressing calli because of the increased expression of a variety of monolignol biosynthesis-related genes. Stress treatments elicited higher expression levels of the gene encoding cinnamyl alcohol dehydrogenase in IbLEA14-overexpressing lines than in control or RNAi lines. These results suggest that IbLEA14 might positively regulate the response to various stresses by enhancing lignification.
The present study examined whether adiponectin can inhibit palmitate-induced apoptosis, and also the associated mechanisms and signal transduction pathways in human umbilical vein endothelial cells. Cells treated with 500 mM palmitate for 48 h increased reactive oxygen species (ROS) generation and induced apoptosis. Treatment with antioxidant N-acetyl-L-cysteine (1 mM) and globular adiponectin (5 mg/ml) inhibited palmitate-induced ROS generation and apoptosis. The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside (AICAR; 1 mM), and cAMP activators forskolin (10 mM) and cholera toxin (200 ng/ml) also displayed the same effects. The inhibitory effects of adiponectin on ROS generation and apoptosis were reversed by the AMPK inhibitor compound C (40 mM), cAMP inhibitor SQ22536 (50 mM), and protein kinase A (PKA) inhibitor H-89 (10 mM). The inhibitory effect of forskolin on palmitateinduced apoptosis was reversed by compound C, whereas the inhibitory effect of AICAR was not reversed by SQ22536 and H-89. AICAR and forskolin could not inhibit palmitate-induced apoptosis in cells treated with dominantnegative AMPK. Forskolin increased phosphorylated AMPK at both Thr-172 and Ser-485/491. These results suggest that adiponectin inhibits palmitate-induced apoptosis by suppression of ROS generation via both the cAMP/PKA and AMPK pathways. Interaction between cAMP/PKA and AMPK pathways may be involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.