Visible light communication (VLC) has recently gained significant academic and industrial attention. VLC has great potential to supplement the functioning of the upcoming radio-frequency (RF)-based 5G networks. It is best suited for home, office, and commercial indoor environments as it provides a high bandwidth and high data rate, and the visible light spectrum is free to use. This paper proposes a multi-user full-duplex VLC system using red-green-blue (RGB), and white emitting diodes (LEDs) for smart home technologies. It utilizes red, green, and blue LEDs for downlink transmission and a simple phosphor white LED for uplink transmission. The red and green color bands are used for user data and smart devices, respectively, while the blue color band is used with the white LED for uplink transmission. The simulation was carried out to verify the performance of the proposed multi-user full-duplex VLC system. In addition to the performance evaluation, a cost-power consumption analysis was performed by comparing the power consumption and the resulting cost of the proposed VLC system to the power consumed and resulting cost of traditional Wi-Fi based systems and hybrid systems that utilized both VLC and Wi-Fi. Our findings showed that the proposed system improved the data rate and bit-error rate performance, while minimizing the power consumption and the associated costs. These results have demonstrated that a full-duplex VLC system is a feasible solution suitable for indoor environments as it provides greater cost savings and energy efficiency when compared to traditional Wi-Fi-based systems and hybrid systems that utilize both VLC and Wi-Fi.