This paper investigates the performance of our recently proposed LED lamp arrangement to reduce the SNR fluctuation from different locations in the room for multi-user visible light communications. The LED lamp arrangement consists of 4 LED lamps positioned in the corners and 12 LED lamps spread evenly on a circle. Our studies show that the SNR fluctuation under such a LED lamp arrangement is reduced from 14.5 dB to 0.9 dB, which guarantees that users can obtain almost identical communication quality, regardless of their locations. After time domain zero-forcing (ZF) equalization, the BER performances and channel capacities of 100-Mbit/s and 200-Mbit/s bipolar on-off-keying (OOK) signal with most significant inter-symbol interference (ISI) are very close to that of the channel without any ISI caused by this LED lamp arrangement.
We propose a scheme to improve the SNR distribution as well as the spectral efficiency of M-QAM OFDM signal for indoor visible light communication by tilting the receiver plane. Newton method is employed for the photo-detector to receive maximum power by finding the optimal tilting angle. This method is a fast algorithm that only three searching steps are needed. The simulation results show that in the case of one LED source, the maximum spectral efficiency improvement is 0.44bit/s/Hz when the launching power of LED source is 12W; while in the case of four LED sources, the maximum spectral efficiency improvement is 0.21bit/s/Hz when the total launching power of the four LED sources is 12W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.