1993
DOI: 10.2514/3.11317
|View full text |Cite
|
Sign up to set email alerts
|

Performance of compressible flow codes at low Mach numbers

Abstract: The accuracy and the performance of three two-dimensional compressible flow codes at freestream Mach numbers as low as 0.001 are examined. Two of the codes employ a finite volume discretization scheme along with a multistage time-stepping algorithm to solve the Euler equations. The two codes differ in their respective use of cell-centered and node-centered differencing schemes. The third code uses an implicit finite difference procedure to solve the unsteady Navier-Stokes equations. Computational test cases ar… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

3
61
1
2

Year Published

1994
1994
2016
2016

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 116 publications
(67 citation statements)
references
References 8 publications
3
61
1
2
Order By: Relevance
“…Interestingly, it depends on the solution of a linear elliptic Helmholtz problem for a density perturbation, that in the incompressible limit becomes effectively a Poisson problem for pressure reminiscent of the projection approaches [50,19]. Over the years many ingenious methods have been devised to extend concepts underlying compressible flow solvers to low-Mach number regime [87,61,49,161,34,166,174,116] and/or generalise incompressible concepts to compressible flows [57,60,191,185,11,186,99,181,182]. In computational meteorology the progress of unified models was motivated by the specificity of atmospheric dynamics and goals of weather and climate prediction.…”
Section: Historical Backgroundmentioning
confidence: 99%
“…Interestingly, it depends on the solution of a linear elliptic Helmholtz problem for a density perturbation, that in the incompressible limit becomes effectively a Poisson problem for pressure reminiscent of the projection approaches [50,19]. Over the years many ingenious methods have been devised to extend concepts underlying compressible flow solvers to low-Mach number regime [87,61,49,161,34,166,174,116] and/or generalise incompressible concepts to compressible flows [57,60,191,185,11,186,99,181,182]. In computational meteorology the progress of unified models was motivated by the specificity of atmospheric dynamics and goals of weather and climate prediction.…”
Section: Historical Backgroundmentioning
confidence: 99%
“…However as a practical matter, time steps are usually limited to 5 -10 times those for explicit schemes due to excessive truncation error (Anderson, et al, 1984:503). Volpe (1993) …”
Section: Compressibility Assessmentmentioning
confidence: 99%
“…МЕТОД ДВОЙНЫХ ШАГОВ ПО ВРЕМЕНИ В расчетах нестационарных течений вязкого сжимаемого газа производная по времени в урав нении (3) при t ∞ к нулю не стремится, поэтому в уравнение (2) добавляется член с производ ной по искусственному времени (метод двойных шагов по времени). Уравнение (3) принимает вид (4) где t -физическое время, τ -искусственное время. Решение системы уравнений (4) является ре шением исходной системв1 уравнений (2), если на каждом шаге по физическому времени член с производной по искусственному времени стремится к нулю.…”
unclassified