The importance of workplace safety in the ready-made garment (RMG) industry in Bangladesh came to the forefront after a series of disastrous events in recent years. In order to reduce the loss of lives and to ensure sustainable development, an in-depth understanding of the determining factors governing structural vulnerability in the RMG industry is needed. This research explores the key factors influencing the vulnerability of factory buildings under both vertical and earthquake loads. For this purpose, an ordered probit model was applied to 3746 RMG factory buildings to determine the key factors that influenced their vertical load vulnerability. A smaller subset of the original sample, 478 buildings, was examined by the same modeling method in greater detail to assess the key factors that influenced their earthquake load vulnerability. This research reveals that column capacity, structural system, and construction materials are the most influential factors for both types of vulnerabilities. Among other factors, soil liquefaction and irregular internal frame affect earthquake load vulnerability significantly. These findings are expected to enable factory owners and designers to better weigh the appropriate vulnerability factors in order to make informed decision that increase workplace safety. The research findings will also help the designated authorities to conduct successful inspections of factory buildings and take actions that reduce vulnerability to both vertical and earthquake loads. Keywords Bangladesh Á Building vulnerability factors Á Earthquake load vulnerability Á Ordered probit model Á Ready-made garment industry Á Vertical load vulnerability