The raw bit error rate of NAND Flash memory increases as the semiconductor geometry shrinks for high density, which makes it very necessary to employ a very strong error correction circuit. The soft-decision-based error correction algorithms, such as low-density parity-check (LDPC) codes, can enhance the error correction capability without increasing the number of parity bits. However, soft-decision error correction schemes need multiple precision data, which obviously increases the energy consumption in NAND Flash memory for more sensing operations as well as more data output. We examine the energy consumption of a NAND Flash memory system with an LDPC code-based soft-decision error correction algorithm. The energy consumed at multiple-precision NAND Flash memory as well as the LDPC decoder is considered. The output precision employed is 1.0, 1.4, 1.7, and 2.0 bits per data. In addition, we also propose an LDPC decoder-assisted precision selection method that needs virtually no overhead. The experiment was conducted with 32-nm 128-Gbit 2-bit multi-level cell NAND Flash memory and a 65-nm LDPC decoding VLSI.