Performance of Two Fruit Fly (Diptera: Tephritidae) Pupal Parasitoids (Coptera haywardi [Hymenoptera: Diapriidae] and Pachycrepoideus vindemiae [Hymenoptera: Pteromalidae]) under Different Environmental Soil Conditions
“…Larvae, therefore, might pupate closer to the soil surface where more oxygen is available. However, pupating closer to the surface increases susceptibility to predation and parasitism (Guillen et al., 2002).…”
The influence of parasitoids and soil compaction on pupation behavior of blow flies was examined in a host–parasitoid system involving Lucilia sericata (Meigen) (Diptera: Calliphoridae) and Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). Larvae of L. sericata were introduced to containers with soil of different compaction levels, with or without parasitoids. Although females of N. vitripennis did not significantly affect the pupation depth of L. sericata, they increased the rate of pupal development by 15.0–23.7 h at 28.4 ± 1.2 °C, and increased the clumping of puparia. Pupation depth of L. sericata was negatively related to soil compaction; mean depth of pupation was 4.4 cm in uncompacted soil and 0.5 cm in high‐compaction soil. In high‐compaction soil, pupal development increased by 10.5–18.8 h at 25.2 ± 0.3 °C, and puparia were clumped. These results provide a framework for locating puparia in forensic investigations and releasing appropriate parasitoids for biological control of blow flies.
“…Larvae, therefore, might pupate closer to the soil surface where more oxygen is available. However, pupating closer to the surface increases susceptibility to predation and parasitism (Guillen et al., 2002).…”
The influence of parasitoids and soil compaction on pupation behavior of blow flies was examined in a host–parasitoid system involving Lucilia sericata (Meigen) (Diptera: Calliphoridae) and Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). Larvae of L. sericata were introduced to containers with soil of different compaction levels, with or without parasitoids. Although females of N. vitripennis did not significantly affect the pupation depth of L. sericata, they increased the rate of pupal development by 15.0–23.7 h at 28.4 ± 1.2 °C, and increased the clumping of puparia. Pupation depth of L. sericata was negatively related to soil compaction; mean depth of pupation was 4.4 cm in uncompacted soil and 0.5 cm in high‐compaction soil. In high‐compaction soil, pupal development increased by 10.5–18.8 h at 25.2 ± 0.3 °C, and puparia were clumped. These results provide a framework for locating puparia in forensic investigations and releasing appropriate parasitoids for biological control of blow flies.
“…In addition, parasitism was found to be a complex system, as there was a 2–5% emergence rate of D. longicaudata and 15–20% multiparasitism by Tetrastichus giffardianus (Hymenoptera: Eulophidae) and Pteromaliade sp. (Hymenoptera: Eulophidae) in those samples, which were not detected by the FA‐NED and FLY‐FAM probes.…”
This method is a rapid, sensitive and specific technique to determine the parasitism rate of F. arisanus across all life stages of B. dorsalis, which will be useful to predict parasitoid output from mass rearing and evaluate the outcome of pest suppression after mass release in the field.
“…The tephritid fruit fly pupal parasitoid Coptera haywardi Ogloblin (Hymenoptera: Diapriidae) can locate pupae buried as deep as 5 cm. Parasitoid foraging success in laboratory experiments is affected by soil texture (sandy soil being detrimental) but not compaction or moisture level (Guillén et al 2002). In the current experiment, sweet corn was grown on an organic soil (Dania muck), but in other locations in Florida, sweet corn is grown on sandy or rocky soil.…”
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.