Barrett's esophagus (BE), a gastroesophageal reflux associated complication, is defined as the replacement of normal esophageal squamous mucosa by specialized intestinal columnar mucosa with the appearance of goblet cells. The presence of BE is associated with an increased risk of developing esophageal adenocarcinoma (EAC). Although the exposure of gastroduodenal contents to the esophageal mucosa is considered to be an important risk factor for the development of esophagitis, BE and EAC, the mechanisms of reflux esophageal injury are not fully understood. Animal models are now being used extensively to identify the mechanisms of damage and to devise protective and mitigating strategies. Experimental studies on animal models by mimicking the processing of gastroesophageal reflux injury have bloomed during the past decades, however, there is controversy regarding which experimental model for reflux esophagitis, experimental BE and experimental EAC is best. In this review article we aim to clarify the basic understanding of gastroesophageal reflux injury and its complications of BE and EAC, as well as to present current understanding of the reflux experimental models. The animal models of experimental esophageal injury are summarized with focus on the surgical procedures to guide the investigator in choosing or developing a correct animal model in future studies. In addition, our own experimental studies of the animal models are also briefly discussed.