T hin-fi lm technology is widely implemented in numerous applications
1. Although fl at substrates are commonly used, we report on the advantages of using curved surfaces as a substrate. Th e curvature induces a lateral fi lm-thickness variation that allows alteration of the properties of the deposited material 2,3 . Based on this concept, a variety of implementations in materials science can be expected. As an example, a topographic pattern formed of spherical nanoparticles 4,5 is combined with magnetic multilayer fi lm deposition. Here we show that this combination leads to a new class of magnetic material with a unique combination of remarkable properties: Th e so-formed nanostructures are monodisperse, magnetically isolated, single-domain, and reveal a uniform magnetic anisotropy with an unexpected switching behaviour induced by their spherical shape. Furthermore, changing the deposition angle with respect to the particle ensemble allows tailoring of the orientation of the magnetic anisotropy, which results in tilted nanostructure material.