Alternative methods to whole liver transplantation require a suitable cell that can be expanded to obtain sufficient numbers required for successful transplantation while maintaining the ability to differentiate into hepatocytes. Mesenchymal stem cells (MSCs) possess several advantageous characteristics for cell-based therapy and have been shown to be able to differentiate into hepatocytes. Thus, we investigated whether the intrahepatic delivery of human MSCs is a safe and effective method for generating human hepatocytes and whether the route of administration influences the levels of donorderived hepatocytes and their pattern of distribution throughout the parenchyma of the recipient's liver. Human clonally derived MSCs were transplanted by an intraperitoneal (n ؍ 6) or intrahepatic (n ؍ 6) route into preimmune fetal sheep. The animals were analyzed 56-70 days after transplantation by immunohistochemistry, enzyme-linked immunosorbent assay, and flow cytometry. The intrahepatic injection of human MSCs was safe and resulted in more efficient generation of hepatocytes (12.5% ؎ 3.5% versus 2.6% ؎ 0.4%). The animals that received an intrahepatic injection exhibited a widespread distribution of hepatocytes throughout the liver parenchyma, whereas an intraperitoneal injection resulted in a preferential periportal distribution of human hepatocytes that produced higher amounts of albumin. Furthermore, hepatocytes were generated from MSCs without the need to first migrate/lodge to the bone marrow and give rise to hematopoietic cells. Conclusion: Our studies provide evidence that MSCs are a valuable source of cells for liver repair and regeneration and that, by the alteration of the site of injection, the generation of hepatocytes occurs in different hepatic zones, suggesting that a combined transplantation approach may be necessary to successfully repopulate the liver with these cells. (HEPATOLOGY 2007;46:1935-1945 T he maintenance of cellular homeostasis within the normal liver and during liver regeneration is provided by mature hepatocytes and cholangiocytes and by the intrahepatic (IH) stem cell compartment located in the canals of Hering and the intralobular bile ducts. 1 Recently, another potential source of cells able to provide liver cell replacement has been identified. These stem/progenitor cells consist of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) that reside within the bone marrow (BM) but can reach the liver through the circulatory system. [2][3][4][5][6][7][8][9][10][11][12] Because it is clearly evident that the shortage of available human donor organs cannot meet the needs of all the patients awaiting liver transplantation, alternatives to whole-organ replacement are urgently needed. Cell-based treatments, with cells of either hepatic or extrahepatic origin that would be able to repopulate and re-establish a functional liver after administration, could serve as a possible alternative to wholeorgan transplantation.In order to attain this goal, several questions, such as the sour...