1997
DOI: 10.1016/s0300-9629(96)00369-6
|View full text |Cite
|
Sign up to set email alerts
|

Peripheral Chemosensitivity and Central Integration: Neuroplasticity of Catecholaminergic Cells Under Hypoxia

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
16
0
1

Year Published

1998
1998
2017
2017

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 22 publications
(19 citation statements)
references
References 45 publications
2
16
0
1
Order By: Relevance
“…[11][12][13][14][15][16] This finding has been attributed to an elevation in the set point for efferent sympathetic outflow resulting from progressive carotid body hypersensitivity and altered structure and function of catecholaminergic neurons in brain stem and cortical regions involved in autonomic cardiovascular regulation. 10,[17][18][19][29][30][31][32] Johnson et al 33 have recently reviewed experimental literature demonstrating induction, by transient challenges, of long-lasting changes in synaptic function within a widely distributed network of brain regions engaged in the longterm regulation of blood pressure and the amplification of initial hemodynamic responses by subsequent rechallenge. These data indicate that short-term external stimuli can induce afferent neural and circulating hormonal changes that in turn facilitate molecular neuroplasticity in subcortical and preganglionic components of the sympathetic nervous system, resulting in an elevated prevailing set point for efferent sympathetic nerve firing and consequent norepinephrine release.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…[11][12][13][14][15][16] This finding has been attributed to an elevation in the set point for efferent sympathetic outflow resulting from progressive carotid body hypersensitivity and altered structure and function of catecholaminergic neurons in brain stem and cortical regions involved in autonomic cardiovascular regulation. 10,[17][18][19][29][30][31][32] Johnson et al 33 have recently reviewed experimental literature demonstrating induction, by transient challenges, of long-lasting changes in synaptic function within a widely distributed network of brain regions engaged in the longterm regulation of blood pressure and the amplification of initial hemodynamic responses by subsequent rechallenge. These data indicate that short-term external stimuli can induce afferent neural and circulating hormonal changes that in turn facilitate molecular neuroplasticity in subcortical and preganglionic components of the sympathetic nervous system, resulting in an elevated prevailing set point for efferent sympathetic nerve firing and consequent norepinephrine release.…”
Section: Discussionmentioning
confidence: 99%
“…[11][12][13][14][15][16] Este hallazgo se ha atribuido a una elevación del punto de regulación del flujo simpá-tico eferente, que resulta de la hipersensibilidad progresiva del cuerpo carotídeo, y de la alteración de la estructura y función de las neuronas catecolaminérgicas del tronco cerebral y las regiones corticales involucradas en la regulación cardiovascular autónoma. 10,[17][18][19][29][30][31][32] Recientemente, Johnson et al revisaron la bibliografía experimental que demostraba inducción, mediante desafíos transitorios, de cambios duraderos de la función sináptica dentro de una red ampliamente distribuida de regiones encefálicas involucradas en la regulación a largo plazo de la presión arterial y la amplificación de las respuestas hemodinámicas iniciales por re-desafío ulterior. Estos datos indican que los estímulos externos a corto plazo pueden inducir cambios neurales aferentes y hormonales circulantes que, a su vez, facilitan la neuroplasticidad molecular de componentes subcorticales y preganglionares del sistema nervioso simpático, lo que determina un punto de regulación elevado prevalente para la descarga nerviosa simpática eferente y la consiguiente liberación de noradrenalina.…”
Section: Discussionunclassified
“…In the subsequent minutes to days of hypoxic exposure, ventilatory activity exhibits hypoxic ventilatory decline, followed by ventilatory acclimatization to chronic hypoxia. Ventilatory acclimatization appears to be dominated by initial, peripheral chemoreceptor sensitization (21), followed by progressively increasing contributions from the central neural integration of carotid chemoafferent neurons (45,220). Thus the ventilatory response to continuous hypoxia is characterized by several unique forms of respiratory plasticity.…”
Section: Hypoxia-induced Respiratory Plasticity (Adult)mentioning
confidence: 99%
“…In mammals, many noradrenergic neurons are hypoxia sensitive and have been implicated in the ventilatory response to hypoxia (Neubauer and Sunderram, 2004;Roux et al, 2000;Soulier et al, 1997). In pre-metamorphic tadpoles, activation of noradrenergic neurons by hypoxia would tend to facilitate both lung and buccal ventilation.…”
Section: Perspectivesmentioning
confidence: 99%