When older adults step over obstacles during multitasking, their performance is impaired; the impairment results from central and/or sensory interference. The purpose was to determine if sensory interference alters performance under low levels of cognitive, temporal, and gait demand, and if the change in performance is different for younger versus older adults. Participants included 17 younger adults (20.9±1.9 years) and 14 older adults (69.7±5.4 years). The concurrent task was a single, simple reaction time (RT) task: depress button in response to light cue. The gait task was stepping over an obstacle (8 m walkway) in three conditions: (1) no sensory interference (no RT task), (2) low sensory interference (light cue on obstacle, allowed concurrent foveation of cue and obstacle), or (3) high sensory interference (light cue away from obstacle, prevented concurrent foveation of cue and obstacle). When standing, the light cue location was not relevant (no sensory interference). An interaction (sensory interference by task, p<0.01) indicated that RT was longer for high sensory interference during walking, but RT was not altered for standing, confirming that sensory interference increased RT during obstacle approach. An interaction (sensory interference by age, p<0.01) was observed for foot placement before the obstacle: With high sensory interference, younger adults placed the trail foot closer to the obstacle while older adults placed it farther back from the obstacle. The change increases the likelihood of tripping with the trail foot for younger adults, but with the lead limb for older adults. Recovery from a lead limb trip is more difficult due to shorter time for corrective actions. Overall, visual sensory interference impaired both RT and gait behavior with low levels of multitask demand. Changes in foot placement increased trip risk for both ages, but for different limbs, reducing the likelihood of balance recovery in older adults.