2019
DOI: 10.26418/jlk.v2i2.20
|View full text |Cite
|
Sign up to set email alerts
|

Perkembangan Part-of-Speech Tagger Bahasa Indonesia

Abstract: Tujuan dari artikel ini adalah membuat kajian literatur terhadap metode pelabelan part-of-speech (POS tagger) untuk Bahasa Indonesia yang telah dilakukan selama 11 tahun terakhir (sejak tahun 2008). Artikel ini dapat menjadi roadmap POS tagger Bahasa Indonesia dan juga dasar pertimbangan untuk pengembangan selanjutnya agar menggunakan dataset dan tagset yang standar sebagai benchmark metode. Terdapat 15 publikasi yang dibahas, pembahasan meliputi dataset, tagset dan metode yang digunakan untuk POS tag Bahasa I… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 12 publications
0
2
0
2
Order By: Relevance
“…This is actually a limitation for Indonesian language as there is no general corpus with POS tagger large enough for this task. The attempt to create a tagged Indonesian corpus is already done by Fu et al, (2018), Dinakaramani et al, (2014), Christanti et al, (2016) and Kamayani, (2019) with a similar recommendation to expand the available corpus.…”
Section: Introductionmentioning
confidence: 99%
“…This is actually a limitation for Indonesian language as there is no general corpus with POS tagger large enough for this task. The attempt to create a tagged Indonesian corpus is already done by Fu et al, (2018), Dinakaramani et al, (2014), Christanti et al, (2016) and Kamayani, (2019) with a similar recommendation to expand the available corpus.…”
Section: Introductionmentioning
confidence: 99%
“…This study will implement Part-of-Speech tagger (POS tagger) method in NLP to extract parts of speech of each word, such as noun, verb, adjective, etc. Some POS tagger in Indonesian language has been conducted in a rulebased model, a probabilistic model, hidden markov model and neural network model [13] such as INA-NLP POS tagger [14], POS tag Indonesia [15], deep neural network POS tagger [16], etc. Some research used POS tagger in Indonesian language directly such as document subjectivity and target detection in opinion mining [17] to extract public opinions [18]; modified opinion mining rules to extract multilabel students complaints [19]; and also Indonesian POS tagging system for computer-aided independent language learning [20].…”
Section: Introductionmentioning
confidence: 99%
“…Penelitian tentang POS tagging pada beberapa bahasa di Indonesia telah banyak dilakukan dengan berbagai metode. Penelitian yang membandingkan berbagai metode dan corpus dari tahun 2008 sampai 2019, menghasilkan metode terbaik yaitu arsitektur neural network dengan menggunakan bidirectional LSTM dan CRF dengan nilai akurasi sebesar 95,68% (KAMAYANI, 2019). Penelitian tentang POS Tagging berbasis aturan dan distribusi probabilitas maximum entropy pada bahasa Jawa Krama mendapatkan hasil akurasi 97.67% (PRAMUDITA, et al, 2016).…”
unclassified