In electric or hybrid vehicles’ propulsion systems, Permanent Magnet-Assisted Synchronous Reluctance Machines represent a viable alternative to Permanent Magnet Synchronous Machines. Based on previous research work, the present paper proposes, designs, and optimizes two ferrite PMaSynRM topologies, analyzed against a reference machine (also PMaSynRM) with improved torque ripple content, based on similar specifications and dimensional constraints. Considering the trend of increasing the DC voltage level in electric and hybrid vehicles, the optimal topology is included in an analysis of the DC voltage level impact on the design and performances of PMSynRM.