Energy-efficient management and highly reliable communication and transmission mechanisms are major issues in Underwater Wireless Sensor Networks (UWSN) due to the limited battery power of UWSN nodes within an harsh underwater environment. In this paper, we integrate the three main techniques that have been used for managing Transmission Power-based Sparsity-conscious Energy-Efficient Clustering (CTP-SEEC) in UWSNs. These incorporate the adaptive power control mechanism that converts to a suitable Transmission Power Level (TPL), and deploys collaboration mobile sinks or Autonomous Underwater Vehicles (AUVs) to gather information locally to achieve energy and data management efficiency (Security) in the WSN. The proposed protocol is rigorously evaluated through extensive simulations and is validated by comparing it with state-of-the-art UWSN protocols. The simulation results are based on the static environmental condition, which shows that the proposed protocol performs well in terms of network lifetime, packet delivery, and throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.