Traffic microsimulation has a functional role in understanding the traffic performance on the road network. This study originated with intent to understand traffic microsimulation and its use in modeling connected and automated vehicles (CAVs). Initially, the paper focuses on understanding the evolution of traffic microsimulation and on examining the various commercial and open-source simulation platforms available and their importance in traffic microsimulation studies. Following this, current autonomous vehicle (AV) microsimulation strategies are reviewed. From the review analysis, it is observed that AVs are modeled in traffic microsimulation with two sets of strategies. In the first set, the inbuilt models are used to replicate the driving behavior of AVs by adapting the models’ parameters. In the second strategy, AV behavior is programmed with the help of externalities (e.g., Application Programming Interface (API)). Studies simulating AVs with inbuilt models used mostly VISSIM compared to other microsimulation platforms. In addition, the studies are heavily focused on AVs’ penetration rate impact on traffic flow characteristics and traffic safety. On the other hand, studies which simulated AVs with externalities focused on the communication aspects for traffic management. Finally, the cosimulation strategies for simulating the CAVs are explored, and the ongoing research attempts are discussed. The present study identifies the limitations of present CAV microsimulation studies and proposes prospects and improvements in modeling AVs in traffic microsimulation.