2019
DOI: 10.3934/dcdsb.2018338
|View full text |Cite
|
Sign up to set email alerts
|

Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay

Abstract: This paper provides a dynamical frame to study non-autonomous parabolic partial differential equations with finite delay. Assuming monotonicity of the linearized semiflow, conditions for the existence of a continuous separation of type II over a minimal set are given. Then, practical criteria for the uniform or strict persistence of the systems above a minimal set are obtained. 3947 3948 RAFAEL OBAYA AND ANA M. SANZ PERSISTENCE IN QUASIMONOTONE PARABOLIC PFDES 3949and delayed state components. A key fact is th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
9
0
4

Year Published

2019
2019
2022
2022

Publication Types

Select...
3
2

Relationship

3
2

Authors

Journals

citations
Cited by 5 publications
(13 citation statements)
references
References 20 publications
0
9
0
4
Order By: Relevance
“…Actually, once more using arguments from Travis and Webb [35], one can prove that the section semiflow τ t : P × X → P × X α is compact provided that t > 0. Then, arguing exactly as in Proposition 2 in Obaya and Sanz [25], we can state the following result.…”
Section: Non-autonomous Scalar Linear-dissipative Parabolic Pdesmentioning
confidence: 53%
“…Actually, once more using arguments from Travis and Webb [35], one can prove that the section semiflow τ t : P × X → P × X α is compact provided that t > 0. Then, arguing exactly as in Proposition 2 in Obaya and Sanz [25], we can state the following result.…”
Section: Non-autonomous Scalar Linear-dissipative Parabolic Pdesmentioning
confidence: 53%
“…La presente orientación es tomada del enfoque de centroide de Martínez y Cruz (2011); el concepto de búsqueda local, de Simon et al (2012); la búsqueda tabú, de Bodas (2017); la selección por torneo y el enfriamiento, de Guasmayan (2014), en los algoritmos genéticos.…”
Section: Estado Del Arteunclassified
“…Se evita retornar al conjunto de óptimos locales ya evaluados, mediante la una marcación conocida como movimientos tabúes, para impedir que sean visitados de nuevo. La búsqueda tabú (TS) (Bodas, 2017) hace uso de dos estrategias: intensificación y diversificación. La primera intensifica la búsqueda alrededor de las mejores soluciones.…”
Section: Metaheurística De Búsqueda Tabúunclassified
See 2 more Smart Citations