Physics of Laser Crystals 2003
DOI: 10.1007/978-94-010-0031-4_3
|View full text |Cite
|
Sign up to set email alerts
|

Persistent Luminescence Materials

Abstract: Abstract. The luminescent efficiency of rare earth ions is usually drastically lowered when defects are present in the host lattice. Persistent luminescence is the most recent rare earth application based on lattice defects. Typical materials are the Eu + ions as codopants enhance greatly the duration and intensity of persistent luminescence. As a result of very slow thermal bleaching of the excitation energy from the lattice defects acting as traps, the new persistent luminescent materials yield luminescence … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
2

Year Published

2006
2006
2016
2016

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 43 publications
0
1
0
2
Order By: Relevance
“…An afterglow phosphor (or storage phosphor) is composed of the host lattice, the recombination (luminescence) center, and the trapping center. The trapping center can be either an electron- or a hole-trapping center . For afterglow phosphors, the captured electrons/holes are spontaneously released at room temperature from the trapping center and recombine in the luminescence center, eventually causing emission that can range from UV to even near-infrared, depending on the luminescence centers and host lattices. , For storage phosphors, deeper traps are needed to prevent the thermal fading at room temperature …”
Section: Introductionmentioning
confidence: 99%
“…An afterglow phosphor (or storage phosphor) is composed of the host lattice, the recombination (luminescence) center, and the trapping center. The trapping center can be either an electron- or a hole-trapping center . For afterglow phosphors, the captured electrons/holes are spontaneously released at room temperature from the trapping center and recombine in the luminescence center, eventually causing emission that can range from UV to even near-infrared, depending on the luminescence centers and host lattices. , For storage phosphors, deeper traps are needed to prevent the thermal fading at room temperature …”
Section: Introductionmentioning
confidence: 99%
“…fim de se obter informações sobre estrutura, morfologia, estados de oxidação e comportamento térmico dos sistemas estudados, os materiais Sr2MgSi2O7:Eu 2+ ,TR 3+ preparados a ~1150 °C foram caracterizados pelas seguintes técnicas: espectroscopia de absorção na região do infravermelho (FTIR), difratometria de raios X método do pó (XPD), microscopia eletrônica de varredura (SEM), análise de rastreamento de nanopartículas (NTA) do monitoramento de variações na temperatura da amostra, permite obter informações de eventos endotérmicos e exotérmicos envolvidos neste processo[136].Desta forma, foram realizadas análises TG/DTG e DTA simultaneamente dos precursores utilizados no método CCM (MASS) e CPC de forma a se investigar as transformações ocorridas durante a síntese dos materiais. Também se observou a presença de nitratos residuais, portanto em sua decomposição é esperado que ocorra a liberação de apenas H2O e NOx[19,137,138]. NOx residual oriundo dos nitratos precursores na fase de coprecipitação.…”
unclassified
“…a segunda etapa de perda de massa ocorre entre 340 -890 °C relacionados à decomposição de NO3residual. O evento endotérmico centrado em 903 °C observado na curva DTA (Figura 4.2b), sem a observação de perda de massa na curva TG, é atribuído à formação da fase tetragonal do Sr2MgSi2O7[19,72,138]. espectroscopia de absorção na região do infravermelho (Fourier Transform Infrared Spectroscopy -FTIR) se baseia na absorção de luz na região do infravermelho por um composto.…”
unclassified