Optical imaging for biological applications requires more sensitive tools. Near-infrared persistent luminescence nanoparticles enable highly sensitive in vivo optical detection and complete avoidance of tissue autofluorescence. However, the actual generation of persistent luminescence nanoparticles necessitates ex vivo activation before systemic administration, which prevents long-term imaging in living animals. Here, we introduce a new generation of optical nanoprobes, based on chromium-doped zinc gallate, whose persistent luminescence can be activated in vivo through living tissues using highly penetrating low-energy red photons. Surface functionalization of this photonic probe can be adjusted to favour multiple biomedical applications such as tumour targeting. Notably, we show that cells can endocytose these nanoparticles in vitro and that, after intravenous injection, we can track labelled cells in vivo and follow their biodistribution by a simple whole animal optical detection, opening new perspectives for cell therapy research and for a variety of diagnosis applications.
ZnGa2O4:Cr3+ presents near-infrared long-lasting phosphorescence (LLP) suitable for in vivo bioimaging. It is a bright LLP material showing a main thermally stimulated luminescence (TSL) peak around 318 K. The TSL peak can be excited virtually by all visible wavelengths from 1.8 eV (680 nm) via d–d excitation of Cr3+ to above ZnGa2O4 band gap (4.5 eV–275 nm). The mechanism of LLP induced by visible light excitation is entirely localized around CrN2 ion that is a Cr3+ ion with an antisite defect as first cationic neighbor. The charging process involves trapping of an electron–hole pair at antisite defects of opposite charges, one of them being first cationic neighbor to CrN2. We propose that the driving force for charge separation in the excited states of chromium is the local electric field created by the neighboring pair of antisite defects. The cluster of defects formed by CrN2 ion and the complementary antisite defects is therefore able to store visible light. This unique property enables repeated excitation of LLP through living tissues in ZnGa2O4:Cr3+ biomarkers used for in vivo imaging. Upon excitation of ZnGa2O4:Cr3+ above 3.1 eV, LLP efficiency is amplified by band-assistance because of the position of Cr3+4T1 (4F) state inside ZnGa2O4 conduction band. Additional TSL peaks emitted by all types of Cr3+ including defect-free CrR then appear at low temperature, showing that shallower trapping at defects located far away from Cr3+ occurs through band excitation.
Persistent luminescence or afterglow is caused by a gradual release of charge carriers from trapping centers. The energy needed to release these charge carriers is determined by the trap depths. Knowledge of these trap depths is therefore crucial in the understanding of the persistent luminescence mechanism. Unfortunately, the trap depths in persistent phosphors are often difficult to evaluate in an accurate and reliable way. The existing analysis methods are mostly based on single experiments, or they ignore the possibility of a continuous distribution of trap depths. We present a procedure to accurately probe the activation energies, even in the presence of a continuous distribution of energy levels. By performing a series of thermoluminescence experiments with varying excitation duration and at varying excitation temperature, and employing the initial rise analysis method, the depth and shape of such a distribution can be estimated. As an example, we investigated the trap system in the violet persistent phosphor CaAl 2 O 4 :Eu,Nd, and show that it consists of a Gaussian-shaped distribution of trap depths. The maximal density of traps lies in the region around 0.9 eV, but the distribution extends to 0.7 eV on the shallow side and 1.2 eV on the deep side. The described procedure can be used to obtain a clear view of the trap system in other persistent phosphors as well. This can lead to a better understanding of the nature of these trapping centers, and the role they play in the persistent luminescent mechanism.
Y 3 Al 5 O 12 (YAG):Ce 3+ is the most widely applied phosphor in white LEDs (w-LEDs) because of strong blue absorption and efficient yellow luminescence combined with a high stability and thermal quenching temperature, required for the extreme operating conditions in high power wLEDs. The high luminescence quenching temperature (~600 K) has been well established, but surprisingly the mechanism for temperature quenching has not been elucidated yet. In this report we investigate the possibility of thermal ionization as a cause of this quenching process, by measuring thermoluminescence (TL) excitation spectra at various temperatures. In the TL excitation (TLE) spectrum at room temperature, there is no Ce 3+ :5d 1 band (the lowest excited 5d level). However, in the TLE spectrum at 573 K, which corresponds to the onset temperature of luminescence quenching, a TLE band due to the Ce 3+ :5d 1 excitation was observed at around 450 nm. Based on our observations, we conclude that the luminescence quenching of YAG:Ce 3+ at high temperatures is caused by the thermal ionization and not by the thermally activated crossover to the 4f ground state. The conclusion is confirmed by analysis of the positions of the 5d states of Ce 3+ relative to the conduction band in the energy band diagram of YAG:Ce 3+ .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.