The biological model of extraversion and neuroticism identified by Eysenck has stimulated increasing interest in uncovering neurobiological substrate of the two fundamental dimensions. Here we aim to explore brain disturbances underlying extraversion and neuroticism in 87 healthy individuals using fractional amplitude of low-frequency fluctuations (LFF) on resting-state functional magnetic resonance imaging. Two different frequency bands, Slow-5 (0.01-0.027 Hz) exhibiting higher power and involving larger brain regions, and Slow-4 (0.027-0.073 Hz) exhibiting less power and emerging locally, were analyzed. Our results showed a positive correlation between LFF amplitude at Slow-5 and extraversion in medial prefrontal cortex and precuneus, important portions of the default mode network, thus suggesting a link between default network activity and personality traits. LFF amplitude at Slow-5 was correlated positively with neuroticism in right posterior portion of the frontal lobe, further validating neuroticism with frontal lateralization. In addition, LFF amplitude at Slow-4 was negatively associated with extraversion and neuroticism in left hippocampus (HIP) and bilateral superior temporal cortex (STC) respectively, supporting the hypothesized (inverse) relationship between extraversion and resting arousal, also implying neural circuit underlying emotional process influencing on personality. Overall, these findings suggest the important relationships, between personality and LFF amplitude dynamic, depend on specific frequency bands.