2022
DOI: 10.1038/s41598-022-21869-y
|View full text |Cite
|
Sign up to set email alerts
|

Personalized prediction of optimal water intake in adult population by blended use of machine learning and clinical data

Abstract: Growing evidence suggests that sustained concentrated urine contributes to chronic metabolic and kidney diseases. Recent results indicate that a daily urinary concentration of 500 mOsm/kg reflects optimal hydration. This study aims at providing personalized advice for daily water intake considering personal intrinsic (age, sex, height, weight) and extrinsic (food and fluid intakes) characteristics to achieve a target urine osmolality (UOsm) of 500 mOsm/kg using machine learning and optimization algorithms. Dat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 54 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?