Recent Studies in Perturbation Theory 2017
DOI: 10.5772/67856
|View full text |Cite
|
Sign up to set email alerts
|

Perturbed Differential Equations with Singular Points

Abstract: Here, we generalize the boundary layer functions method (or composite asymptotic expansion) for bisingular perturbed differential equations (BPDE that is perturbed differential equations with singular point). We will construct a uniform valid asymptotic solution of the singularly perturbed first-order equation with a turning point, for BPDE of the Airy type and for BPDE of the second-order with a regularly singular point, and for the boundary value problem of Cole equation with a weak singularity.A uniform val… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 47 publications
0
1
0
1
Order By: Relevance
“…S. Kaplun and P. A. Lagerstrom [6] have presented asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers. N. Fenichel [7], K. K. Alymkulov and D. A. Tursunov [8], P. A. Lagerstrom and R. G. Casten [9] used singular perturbation technique for solving ordinary differential equation. Lagerstrom's model equation is given by the non-autonomous second-order boundary value problem…”
Section: Introductionmentioning
confidence: 99%
“…S. Kaplun and P. A. Lagerstrom [6] have presented asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers. N. Fenichel [7], K. K. Alymkulov and D. A. Tursunov [8], P. A. Lagerstrom and R. G. Casten [9] used singular perturbation technique for solving ordinary differential equation. Lagerstrom's model equation is given by the non-autonomous second-order boundary value problem…”
Section: Introductionmentioning
confidence: 99%
“…Өзгөчө Лайтхилл түрүндөгү биринчи жана экинчи тартиптеги теңдемелери үчүн жалпыланган чекара усулу[1], кеңейтүү усулу[2] жана униформизациялоо усулдарын колдонсо болот.…”
unclassified